Abstract
We examine a Markov tree (MT) model for option pricing in which the dynamics of the underlying asset are modeled by a non-IID process. We show that the discrete probability mass function of log returns generated by the tree is closely approximated by a continuous mixture of two normal distributions. Using this normal mixture distribution and risk-neutral pricing, we derive a closed-form expression for European call option prices. We also suggest a regression tree-based method for estimating three volatility parameters σ, σ+, and σ− required to apply the MT model. We apply the MT model to price call options on 89 non-dividend paying stocks from the S&P 500 index. For each stock symbol on a given day, we use the same parameters to price options across all strikes and expires. Comparing against the Black–Scholes model, we find that the MT model’s prices are closer to market prices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.