Abstract

In this paper, we extend the classical constant elasticity of variance (CEV) model to a subdiffusive CEV model, where the underlying CEV process is time changed by an inverse [Formula: see text]-stable subordinator. The new model can capture the subdiffusive characteristics of financial markets. We find the corresponding fractional Fokker–Planck equation governing the PDF of the new process. We also derive the analytical formula for option prices in terms of eigenfunction expansion. This method avoids the evaluation of PDF of an inverse [Formula: see text]-stable variable and also eliminates the need for numerical integration to calculate the option prices. We numerically investigate the sensitivities of the option prices to the key parameters of the newly developed model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call