Abstract

A geomechanics study carried out in the Blacktip field, offshore Australia led to optimum wellbore deviation and azimuth to minimise drilling-associated instability problems near a major fault in the field. Elastic and strength properties of the formations and magnitude of principal stresses in the field were estimated from a mechanical earth model (MEM) based on offset well data. The direction of the minimum horizontal stresses was predicted from formation microresistivity image (FMI) logs available in offset wells. The MEM results were calibrated using results from laboratory experiments, well tests and drilling incidents from drilling reports. The MEM showed that formations at the lower section of the well are very competent and have high uniaxial strength; however, most of the failures in the form of breakouts observed from calliper and image logs were in this interval. Therefore, obtaining a good match between the model and observed failures required a large stress anisotropy to be considered for the lower section of the wellbore. Further investigations demonstrated that this is because the wellbore trajectory at deeper depth gets closer to the major fault plane, and this large stress anisotropy is due to the stress redistribution near the fault. The data from offset well was mapped into the planned trajectory, and the selection of the optimum trajectory and a stable mud weight window for the appropriate section led to successful drilling of the deviated well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call