Abstract

Weighted digital modulation schemes which provide bit error probabilities matched to the PCM bits with respect to their sensitivity to digital errors are analyzed. The channel is additive, white Gaussian. The PCM system has arbitrary code, companding law and input signal density function. Especially optimum weighted PSK/PCM and QAM/PCM are given for speech signals. The average channel signal to noise ratio is kept constant when schemes are compared. We obtain a channel signal to noise ratio gain in threshold extension of 2 dB for standard 8 bit PCM. The performance of suboptimum schemes, where the number of different bit error probability levels are smaller than the number of PCM bits are also studied. Two levels per 8 bit PCM word yield more than half of the achievable gain (in dB) and 4 levels is almost equal to optimum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.