Abstract

To limit the consequences of climate change, generation from renewables coupled with large scale electrification is necessary. However, the deployment of renewables has its own challenges and not all sectors can be electrified. Hydrogen production from wind energy emerges as a promising solution that can alleviate these challenges. The current costs of green hydrogen production are high due to the high costs of electricity used for electrolysis. This study looks into the benefits of optimizing a turbine specifically for hydrogen production and the reduction in the Levelized Cost of Hydrogen (LCoH) compared to the use of conventional Levelized Cost of Energy (LCoE) optimized turbine. The case presented shows that turbines designed specifically for hydrogen production tend to have a higher specific power but these provide only a marginal advantage over using LCoE-optimized turbines for hydrogen production. Oversizing the electrolyzer compared to the turbine was shown to be a good design strategy. In the future, designing turbines specifically for hydrogen production could have certain benefits, depending on how the electrolyzer efficiencies, hydrogen production costs and the hydrogen market evolve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.