Abstract
The authors obtain the optimum transmission ranges to maximize throughput for a direct-sequence spread-spectrum multihop packet radio network. In the analysis, they model the network self-interference as a random variable which is equal to the sum of the interference power of all other terminals plus background noise. The model is applicable to other spread-spectrum schemes where the interference of one user appears as a noise source with constant power spectral density to the other users. The network terminals are modeled as a random Poisson field of interference power emitters. The statistics of the interference power at a receiving terminal are obtained and shown to be the stable distributions of a parameter that is dependent on the propagation power loss law. The optimum transmission range in such a network is of the form CK/sup alpha / where C is a constant, K is a function of the processing gain, the background noise power spectral density, and the degree of error-correction coding used, and alpha is related to the power loss law. The results obtained can be used in heuristics to determine optimum routing strategies in multihop networks.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.