Abstract

This paper presents the results of optimum diversity and coding of a cellular radio system using spread-spectrum code division multiple-access (SS-CDMA) and binary phase-shift-keying modulation (BPSK). The base-to-mobile link is considered with the mobile at the boundary between cells. Hence, the received signal is subject to Rayleigh or log-normal fading, as well as to interference from neighbouring cells. First, the probability of error for the fading-interference channel is approximated as a simple, closed-form expression, with one-parameter which signifies the degree of channel fading and interference. It is shown that the approximation is quite satisfactory for a wide range of channel fading and interference. Beside avoiding numerical integration, the use of such simplification offers more insight into the nature of the channel. The use of error-correcting codes to enable increasing the system capacity is then investigated. Since employment of either SS or forward-error correction (FEC) techniques results in bandwidth expansion for a communication system using a fixed alphabet size, there exists a trade-off between how much processing gain and how much coding gain the system should employ such that the bit-error rate is minimum. Two types of coding are analysed, viz. repetitive coding and binary BCH codes. For the repetitive code, Chernoff upper-bound is used to approximate the bit-error rate (BER) and the optimum diversity is then found by a simple minimisation. To find the optimum trade-off between code rate k/n and correction capability t of BCH (n,k,t) codes, the first term of the series representing the BER is used as an estimate of the probability of error. Such approximation is shown to yield a nearly exact estimate of the optimum coding parameters, which minimise the BER. Although exact analysis can be used, the present approach yields a general solution, and optimum design parameters can be related to channel conditions. The essence of the results is as follows: (i) fading and interference channel is approximated as a one parameter family; (ii) optimum diversity increases and processing gain decreases, almost linearly, with the increase of interference and fading severity; (iii) optimum BCH code rate is 0.3 over a wide range of fading and interference conditions, and (iv) optimising coding gain and processing gain can provide substantial increase in system capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call