Abstract
Conversion between space rectangular (X, Y, Z) and curvilinear (φ, λ, h) coordinates is an important task in the field of Surveying, geodesy, positioning, navigation, mapping etc. Different techniques which include iterative methods, non-iterative techniques and closed form algebraic methods have been applied over the years to carry out the coordinate conversion. However, the results obtained using these techniques are deficient in one way or the other due to the inherent limitations such as inability to produce results for curvilinear coordinates when the values of X, Y and Z are subsequently or simultaneously equal to zero. Therefore, this study attempts to put forth an optimum coordinate conversion technique between space rectangular and curvilinear coordinates. The data used are coordinates of points which include the space rectangular coordinates and their equivalent curvilinear coordinates. They were observed and processed in Nigeria using Doppler 9 software by African Doppler Survey (ADOS) and they were confirmed to be of first order accuracy and hence of high quality. The data processing involved the design of the optimum techniques equations, coding of the algorithms and necessary computations to obtain results. Analyzing the results obtained, it can be inferred that the designed optimum model has successfully carried out the conversion between space rectangular and curvilinear coordinates. Therefore, the optimum technique model is recommended for use for the conversions from Space rectangular coordinates to Geocentric, Geodetic, Reduced coordinates and vice versa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Engineering Research and Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.