Abstract
The effect of synthesis temperature on the superconducting properties of (Cu1−xTlx)Ba2Ca3Cu4O12−δ(CuTl-1234) samples has been explored. Almost all the superconducting parameters studied in this research work are observed to be suppressed with the increase of synthesis temperature beyond 880 °C, which may be due to impurities caused by the volatility of some constituents such as thallium and oxygen deficiencies as well in the final compound. The Fluctuation Induced Conductivity (FIC) analysis has shown a decrease in the cross-over temperature (T0) and the shift of three-dimensional (3D) Aslamasov–Larkin (AL) regions to the lower temperature with the increase of synthesis temperature beyond 880 °C. A direct correlation between the cross-over temperature (T0), the zero temperature coherence length {ξc(0)}, the zero resistivity critical temperature {Tc (R=0)} as well as carrier concentration has also been observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.