Abstract
The study of start-up performance for a direct internal reforming molten carbonate fuel cell (DIR-MCFC) system is presented. Since a kW-class stack is assembled with an additional preheating design, the improvement of start-up behavior is conducted to find the proper operating strategy. For a cold start-up fuel cell system, both start-up delay and inverse response are strictly detected. When the optimum operating strategy is determined by solving the steady-state optimization algorithm subject to stack temperature constraint, the rapid system start-up as well as the maximum power output can be achieved simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.