Abstract

Most conventional heteronuclear spin-state-selective (S 3) NMR experiments only work for a specific multiplicity, typically IS spin systems. Here, we introduce a general and efficient IPAP strategy to achieve S 3 editing simultaneously for all multiplicities in the acquisition dimension of the HSQC experiment. Complementary in-phase (HSQC-IP) and anti-phase (HSQC-AP) data are separately recorded with a simple phase exchange of two 90° proton pulses involved in the mixing process of the F2-coupled sensitivity-improved HSQC pulse sequence. Additive and subtractive linear combination of these IP/AP data generates simplified F2-α/β-spin-edited HSQC subspectra for all IS, I 2S, and I 3S spin systems and combines enhanced and optimized sensitivity with excellent tolerance to unwanted cross-talk contributions over a considerable range of coupling constants. Practical aspects such as pulse phase settings, transfer efficiency dependence, inter-pulse delay optimization, and percentage of cross-talk are theoretically analyzed and discussed as a function of each I n S multiplicity. Particular emphasis on the features associated to spin-editing in diastereotopic I 2S spin systems and application to the measurement of long-range proton–carbon coupling constants are also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.