Abstract
In this article, we discuss the penalized least squares problem which has many advantageous computational properties. This method based on penalized spline (P-spline) smoothing can be formulated to fit into a linear mixed effects model framework. The most important issue in the implementation of this method is to specify the amount of smoothing. In an attempt to address the strategy of optimum amount of smoothing, this article provides a comparative study for different methods (or criteria) of choosing the optimum smoothing parameter: an improved version of the Akaike information criterion (AICc); generalized cross-validation (GCV); cross-validation (CV); Mallows’ C p criterion; risk estimation using classical pilots (RECP) and restricted maximum likelihood (REML). In order to explore and compare the performance of these methods, a simulation study is performed for data sets with different sample sizes. As a result of simulation, the appropriate selection criteria are provided for a suitable smoothing parameter selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.