Abstract

ABSTRACTA reliability acceptance sampling plan (RASP) is a variable sampling plan, which is used for lot sentencing based on the lifetime of the product under consideration. If a good lot is rejected then there is a loss of sales, whereas if a bad lot is accepted then the post sale cost increases and the brand image of the product is affected. Since cost is an important decision-making factor, adopting an economically optimal RASP is indispensable. This work considers the determination of an asymptotically optimum RASP under progressive type-I interval censoring scheme with random removal (PICR-I). We formulate a decision model for lot sentencing and a cost function is proposed that quantifies the losses. The cost function includes the cost of conducting the life test and warranty cost when the lot is accepted, and the cost of batch disposition when it is rejected. The asymptotically optimal RASP is obtained by minimizing the Bayes risk in a set of decision rules based on the maximum likelihood estimator of the mean lifetime of the items in the lot. For numerical illustration, we consider that lifetimes follow exponential or Weibull distributions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.