Abstract

The fragility of green ceramic compacts introduces considerable difficulties during green or bisque machining. This paper demonstrates methods developed to manufacture thin wall–thin floor, complex green ceramic parts to close tolerance. Hybrid finite element (FE)/mechanistic models were utilized in the development of the green machining process. An FE model was used to define cutting edge geometry and machining parameters that would reliably produce crack free parts. Mechanistic model was used to direct cutter path generation of a 5-axis milling machine having a large axial depth of cut, and to prevent edge chipping. The optimized cutter path eliminated any need for hand work before densifying the machined part.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.