Abstract

The finite element model based on First Shear Displacement Theory to study the mechanical and electrical behaviors of cantilever laminated composite plate bonded piezoelectric patches on surface is presented. A nine-node isoparametric rectangular element with 5 degrees of freedom for the generalized displacements and 2 electrical degrees of freedom at each node is used. Optimization techniques based on genetic algorithm (GAs) are applied in order to maximize the piezoelectric actuator efficiency, improve the structural performance. The illustrative examples and results of the appropriate applied voltages, position of bonded piezoelectric actuator patches and fiber angle to achieve the desired displacement of the cantilever composite plate are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.