Abstract

Positive displacement expanders are quickly gaining popularity in the fields of micropower generation and refrigeration engineering. Unlike turbomachines, expanders can handle two-phase flow applications at low speed and flow rate levels. This paper is concerned with a simple-design positive displacement expander based on the limaçon of Pascal. The paper offers an insight into the thermodynamic workings of the limaçon gas expander and presents a mathematical model to describe the manner in which the port locations affect the expander performance. A stochastic optimization technique is adopted to find the locations, for the expander ports, which produce best expander performance for given chamber dimensions. The operating speed and other parameters will be held constant during the optimization procedure. A case study is offered in this paper to prove the validity of the presented approach, and comments are given on how various operating parameters affect system performance in the limaçon design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.