Abstract

Deterministic single beam phase retrieval techniques based on the transport of intensity equation (TIE) use the axial intensity derivative obtained from a series of intensities recorded along the propagation axis as an input to the TIE-based solver. The common belief is that, when reducing the error present in the axial intensity derivative, there will be minimal error in the retrieved phase. Thus, reported optimization schemes of measurement condition focuses on the minimization of error in the axial intensity derivative. As it is shown in this contribution, this assumption is not correct and leads to underestimating the value of plane separation, which increases the phase retrieval errors and sensitivity to noise of the TIE-based measurement system. Therefore, in this paper, a detailed analysis that shows the existence of an optimal separation that minimizes the error in the retrieved phase for a given TIE-based solver is carried out. The developed model is used to derive analytical expressions that provide an optimal plane separation for a given number of planes and level of noise for the case of equidistant plane separation. The obtained results are derived for the widely used Fourier-transform-based TIE solver, but it is shown that they can also be applied to multigrid-based techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.