Abstract

This study proposed a design procedure to determine the optimal location, moving direction, and system parameters of multiple tuned mass dampers systematically for vibration control of asymmetric buildings under dynamic loadings such as earthquake or wind excitations. A piece of computer software was developed as a postprocessor of any commercial structural analysis programs, such as ETABS, SAP2000, and so on. First, the modal parameters of target building structure were extracted from its finite element model. The optimum location and moving direction of the multiple tuned mass dampers system are determined based on the controlled mode shapes and both modal participating mass ratio and modal direction factor. Then, the optimal parameters of the multiple tuned mass dampers system were calculated by minimizing the mean square modal displacement response ratio of the controlled mode for the target building with and without multiple tuned mass dampers system. To evaluate control effectiveness, the responses of the building with and without multiple tuned mass dampers system were compared in both frequency and time domains. The analysis results from a 5-story building with different torsion-coupling degrees and a 46-story real building show that the proposed multiple tuned mass dampers system is quite effective in mitigating excessive floor vibration, base shear, and elapsed time of vibration due to earthquake excitations to enhance both structural safety and resident comfort. It is also concluded that the torsion-coupling effect should be considered in determining the optimum planar location of multiple tuned mass dampers system which is equivalent to mass increase of the multiple tuned mass dampers system and thus improves the control efficacy for asymmetric buildings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call