Abstract
The Active Constrained Layer Damping (ACLD) treatment has been used successfully for controlling the vibration of various flexible structures. It provides an effective means for augmenting the simplicity and reliability of passive damping with the low weight and high efficiency of active controls to attain high damping characteristics over broad frequency bands. In this paper, optimal placement strategies of ACLD patches are devised using the modal strain energy (MSE) method. These strategies aim at minimizing the total weight of the damping treatments while satisfying constraints imposed on the modal damping ratios. A finite element model is developed to determine the modal strain energies of plates treated with ACLD. The treatment is then applied to the elements that have highest MSE in order to target specific modes of vibrations. Numerical examples are presented to demonstrate the utility of the devised optimization technique as an effective tool for selecting the optimal locations of the ACLD treatment to achieve desired damping characteristics over a broad frequency band.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.