Abstract

A method based on optimal control theory is presented in this paper to solve path-tracking problems in inverse vehicle handling dynamics. The idea behind is to identify the optimal steering torque input along a prescribed path to generate an expected trajectory that guarantees minimum clearance. Based on this purpose, the path-tracking problem, treated as an optimal control problem, is first converted into a nonlinear programming problem by Gauss pseudospectral method (GPM) and is then solved with Sequential quadratic programming (SQP). Finally, a real vehicle test is executed to verify the rationality of the proposed model and methodology. Results show that the minimum lateral position error of the generated path-tracking trajectory can be a good solution for path-tracking problem in inverse vehicle handling dynamics for GPM. The algorithm has higher calculation accuracy compared with other methods to solve path-tracking problems. The study could help drivers identify safe lane-keeping trajectories and areas easily.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.