Abstract

Externally-fired microturbines (EFMT) yield promising performance in small-scale utilization of biofuels. As in larger gas turbines, the part-load performance of the EFMT is very sensitive to the selected power control method, and in general subject to severe degradation at part load. The control parameters typically include the maximum combustion gas temperature or turbine inlet temperature and the speed of the shaft. At the design point, power generation efficiency can be increased by allowing a fraction of air to bypass the burner and the combustion gas – air heat exchanger. At the same time the heat exchanger size is increased. Therefore, the by-pass flow affects the optimal sizing of the EFMT as well. In this paper, the effect of by-pass flow on the part-load performance of a single-shaft EFMT in combined heat and power generation is analyzed. In the application, the microturbine is operated by the heat demand. The control methods incorporate the use of the maximum combustion gas temperature, the speed of the shaft, and the amount of by-pass air. The focus of the study is to determine the economically optimal control scheme for the engine. The economy model uses the profit flow from the EFMT as a criterion. The results show that the inclusion of the by-pass variation in the control methods can improve the economy of temperature-controlled EFMT at part load but has no benefits when using speed control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call