Abstract

Reconfigurable manufacturing systems constitute a new manufacturing paradigm and are considered as the future of manufacturing because of their changeable and flexible nature. In a reconfigurable manufacturing environment, basic modules can be rearranged, interchanged, or modified, to adjust the production capacity according to production requirements. Reconfigurable machine tools have modular structure comprising of basic and auxiliary modules that aid in modifying the functionality of a manufacturing system. As the product’s design and its manufacturing capabilities are closely related, the manufacturing system is desired to be customizable to cater for all the design changes. Moreover, the performance of a manufacturing system lies in a set of planning and scheduling data incorporated with the machining capabilities keeping in view the market demands. This research work is based on the co-evolution of process planning and machine configurations in which optimal machine capabilities are generated through the application of multi-objective genetic algorithms. Furthermore, based on these capabilities, the system is tested for reconfiguration in case of production changeovers. Since, in a reconfigurable environment, the same machine can be used to perform different tasks depending on the required configuration, the subject research work assigns optimum number of machines by minimizing the machining capabilities to carry out different operations in order to streamline production responses. An algorithm has also been developed and verified on a part family. As a result of the proposed methodology, an optimized reconfigurable framework can be achieved to realize optimal production of a part family. Finally, the proposed methodology was applied on a case study and respective conclusions were drawn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.