Abstract

This paper studies the performance and key structural properties of the optimum location-based relay selection policy for wireless networks consisting of homogeneous Poisson distributed relays. The distribution of the channel quality indicator at the optimum relay location is obtained. A threshold-based distributed selective feedback policy is proposed for the discovery of the optimum relay location with finite average feedback load. It is established that the total number of relays feeding back obeys a Poisson distribution and an analytical expression for the average feedback load is derived. The analytical expressions for the average rate and outage probability with and without selective feedback are obtained for general path-loss models. It is shown that the optimum location-based relay selection policy outperforms other common relay selection strategies notably. It is also shown that utilizing location information from five relays on average is enough to achieve almost the same performance with the infinite feedback load case. As generalizations, isotropic Poisson point processes and heterogeneous source-to-relay and relay-to-destination links are also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.