Abstract

Based on the variation in the optical density due to erythrocyte concentration and movement, the axial tomographic and image velocimetry techniques are respectively applied to determine the flow field, i.e., the distribution of erythrocytes and axial and radial velocity components, in steady blood flow through a curved glass capillary with a diameter of 180 μm. The data at four positions (two straight and two curved segments of the capillary) are recorded by a video-microscopic system on a video cassette. The erythrocyte and velocity distribution profiles change from symmetric at the straight position to an asymmetric shape at the curved sections. These profiles become symmetric again at the straight section of the capillary. The increase in the radial velocity component at curved portions is attributed to the secondary flow. The tomograms obtained by concentration profiles show respective changes in the cellular population at various cross-sectional positions. The kinetic energy dissipation, as calculated based on a determination of the flow field, is the minimum for the observed profiles. Any deviation towards parabolic form leads to the dissipation of a higher amount of energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.