Abstract

We consider conjugate heat transfer between two conductive and conforming media, with isothermal boundary conditions on the exposed surfaces, and continuity of the temperature and the heat flux along their interface. We address the inverse problem of finding the shape of the interface such that the heat transfer rate is maximized. We formulate three isoperimetric, shape optimization problems associated with three different applications: i) the optimal shape of corrugations (surface “roughness”), ii) the optimal shape of high conductivity inserts (inverted fins) and iii) the optimal shape of high conductivity fins. As expected, the optimal geometries have the shape of an extension of the high conductivity material into the low conductivity material. For the case of corrugations and inserts, the optimum shapes are triangular for small perimeters; for large perimeters and thick slabs they are elliptical and tend to cover the whole width/period of the domain. Optimum fins are characterized by long, shallow valleys and deep, narrow protrusions of the high conductivity material. For the parameters considered in this study, the width of the protrusion is approximately one quarter of the period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.