Abstract

We present the theoretical and simulation results of the relationship between three input states of polarization (SOP) and the Mueller matrix measurement error in an optical system having birefringence and finite polarization-dependent loss or gain (PDL/G). By using the condition number as the criterion, it can be theoretically demonstrated that the three input SOPs should be equally-spaced on the Poincaré sphere and centered on the reversed PDL/G vector to achieve better measurement accuracy in a single test. Further, an upper bound of the mean of the Mueller matrix measurement error is derived when the measurement errors of output Stokes parameters independently and identically follow the ideal Gaussian distribution. This upper bound also shows that the statistically best Mueller matrix measurement accuracy can be obtained when the three input SOPs have the same relationship mentioned above. Simulation results confirm the validity of the theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call