Abstract

The theory of flows is one of the most important parts of Combinatorial Optimization and it has various applications. In this paper we study optimum (maximum or minimum) flows in directed bipartite dynamic network and is an extension of article [9]. In practical situations, it is easy to see many time-varying optimum problems. In these instances, to account properly for the evolution of the underlying system overtime, we need to use dynamic network flow models. When the time is considered as a variable discrete values, these problems can be solved by constructing an equivalent, static time expanded network. This is a static approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.