Abstract
In continuation to a recent work on the statistical--mechanical analysis of minimum mean square error (MMSE) estimation in Gaussian noise via its relation to the mutual information (the I-MMSE relation), here we propose a simple and more direct relationship between optimum estimation and certain information measures (e.g., the information density and the Fisher information), which can be viewed as partition functions and hence are amenable to analysis using statistical--mechanical techniques. The proposed approach has several advantages, most notably, its applicability to general sources and channels, as opposed to the I-MMSE relation and its variants which hold only for certain classes of channels (e.g., additive white Gaussian noise channels). We then demonstrate the derivation of the conditional mean estimator and the MMSE in a few examples. Two of these examples turn out to be generalizable to a fairly wide class of sources and channels. For this class, the proposed approach is shown to yield an approximate conditional mean estimator and an MMSE formula that has the flavor of a single-letter expression. We also show how our approach can easily be generalized to situations of mismatched estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.