Abstract

SummaryA new seismic design manner, namely building mass damper (BMD), which is inspired from a combination of mid‐story isolation and tuned mass damper design concepts, recently attracts immense attention. It is mainly because that the use of partial structural mass of the building as an energy absorber in the BMD design can overcome the drawback of limited response reduction due to insufficient added tuned mass in the conventional tuned mass damper design. In this study, an optimum BMD (OBMD) design approach, namely optimum dynamic characteristic control approach, based on a simplified 3‐lumped‐mass structure model is proposed to seismically protect both the superstructure (or tuned mass) and the substructure (or primary structure), respectively, above and below the control layer. A series of sensitivity analyses and experimental studies on different parameters, including mass, frequency, and damping ratios, of a building model designed with a BMD system were conducted. The test results verify the practical feasibility of the BMD concept as well as the effectiveness of the proposed OBMD design. Furthermore, by comparing with the numerical results of a mid‐story isolated counterpart, it is demonstrated that the proposed OBMD design can have a comparable and even better control performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call