Abstract

For discrete actuation with shape memory alloy (SMA) wires, the actuation moment can be controlled by changing the amount of wire offset. Increasing offset not only enhances the actuating moment, but also demands larger displacement capability of the actuator. In this paper, large deflection of a cantilever beam actuated by a SMA wire has been investigated. Both the theoretical and experimental results reveal the existence of an optimum offset maximizing the end deflection. The optimum offset depends on the flexural stiffness of the beam, SMA wire properties, and the input actuation level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.