Abstract

Compressor rotors and turbine rotors are subject to centrifugal and thermal loads. These loads increase proportionally with tip speed, pressure ratio, and gas temperature. On the other hand, the rotor weight must be lessened to improve rotor dynamics and restrict bearing load. Thus, an optimum design technique is required, which offers the lightest possible wheel shape under the stress limit restriction. This paper introduces an optimum design system developed for turbomachinery rotors, and discusses several application results. The sequential linear programming method is used in the optimizing process, and centrifugal and thermal stress analyses of variable thickness rotating wheels are performed using Donath’s method. This system’s validity is confirmed by application to uniform-strength rotating disk problems and comparison with analytical results. This optimum design program is then applied to the design of axial flow compressor wheels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call