Abstract
This paper presents exact optimum test plans for simple time-step stress models in accelerated life testing. An exponential life distribution with a mean that is a log-linear function of stress, and a cumulative exposure model are assumed. Maximum likelihood methods are used to estimate the parameters of such models. Optimum test plans are obtained by minimizing the mean square error between the maximum likelihood estimate of a certain moment of the lifetime at a design stress and the real moment. The advantage of our optimum test plans is that it does not require large number of items to be tested. We also compare our results with test plans obtained by minimizing the asymptotic variance of the maximum likelihood estimate of the mean life at a design stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.