Abstract

The authors propose a method by which to design an optimum vibration control system composed of continuous body structures using modal analysis and sensitivity analysis. The mechanical structures are modeled first by FEM. This spatial model is of such a high degree-of-freedom (DOF) that a control system cannot be designed. This spatial model is transformed into a modal model in order to reduce DOF. The optimum control system is designed by applying the optimum control theory to this reduced model. However, stability of the control system is not always guaranteed because the modal model ignores high-order modes. An optimization method of the control system which guarantees stability of the actual system is proposed in this paper. We propose also an experimental optimization of the control system based on experimental modal analysis. The optimization is performed using sensitivity analysis and nonlinear programming. The effectiveness of the proposed method is verified by both simulation and experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call