Abstract
In order to design shoes suitable for cold environments, knowledge of the thermal conditions inside the shoes and the variables affecting those conditions is necessary. A two-dimensional model of a boot and sock was developed to investigate the effect of the materials and dimensions of various parts of shoes and to design geometry for them to prevent foot frostbite. The optimization algorithm was used to optimize the dimensions of the boots to maximize the minimum foot temperature with the lowest boot weight. Two types of shoe soles and two kinds of shoe uppers were used to design suitable shoes. The results show the following: (1) In the design boots, the thermal insulation of the toe area plays an essential role in preventing frostbite. Two variables of the thickness of the toe cap and the length of the shoe sole had the greatest impact on the design of shoes with the least weight and the most protection against frostbite. So that to increase minimum foot temperature from 7°C to 15°C, 16°C, or 17°C, only the amounts of these variables should increase. (2) In designing the suitable boot, choosing the proper shoe sole had a significant effect on increasing the thermal insulation in the shoe and reducing its weight. So, for the boot with a minimum foot temperature of 20°C, by changing the shoe sole from EVA08 to EVA12, the weight is reduced by 42%. (3) To maximize the minimum foot temperature, it is necessary to use thick socks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.