Abstract
In this paper, the performance of the genetic algorithm is improved by introducing some new crossover and mutation operators. The new operators are incorporated into a multiple-deme genetic algorithm in which population is divided into subpopulations and communication between different demes is established through migration of individuals, enhancing diversity and resulting in better solutions. This algorithm is applied to the minimum weight design of steel frames subjected to actual strength and ductility constraints of AISC–ASD specifications as well as other serviceability and constructability constraints. The efficiency of the proposed method is demonstrated through optimising two benchmark problems including a three-bay, three-storey steel frame and a five-bay, 22-storey special steel frame. Significant improvements in the optimum solutions are obtained with reduced number of finite element analyses, resulting in less computational effort.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.