Abstract

Pipe bending by high-frequency local induction heating is an advanced technique used to bend pipes having a small bending radius and a large diameter. Although pipe bending is a widely used engineering process, the optimum process parameters are decided on the basis of a trial and error method by highly experienced field engineers. Hence, it is necessary to develop an integrated methodology for the optimum design of the pipe bending process. During hot-pipe bending using induction heating, the thickness of the outer wall of the pipe decreases because of tensile stress, but the thickness is not allowed to decrease by more than 12.5%. The use of the DOE method and a dynamic reverse moment is proposed for maintaining the thickness reduction ratio to within 12.5%, when D/t is high. The results of the proposed approach are found to be in good agreement with those of FEA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.