Abstract

A method for structural dynamic optimization is proposed using sensitivity analysis of resonance and anti-resonance frequencies. The sensitivity of the anti-resonance frequency is newly defined. An approach for eliminating the resonance peak from the frequency response function (FRF) is proposed using this sensitivity, modifying both the frequencies of this resonance and the neighboring anti-resonance bottom to the same value. The proposed method is applied to determine the optimum thickness of a plate in order to eliminate resonance peaks from its FRF. Effectiveness of this method is verified experimentally. Optimum design of an optical actuator for a compact disk player is performed practically by eliminating resonance peaks which deteriorates its servo control function. The player, with this optimized actuator, shows an excellent performance of sound playback.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.