Abstract
A comprehensive set of ten artificial neural networks is developed to suggest optimal dimensions of type ‘C’ Bi-lobe tanks used in the shipping of liquefied natural gas. Multi-objective optimization technique considering the maximum capacity and minimum cost of vessels are implemented for determining optimum vessel dimensions. Generated populations from a genetic algorithm are used by Finite Element Analysis to develop new models and find primary membrane and local stresses to compare with their permissible ranges using PYTHON coding. The optimum design space is mathematically modeled by training ten artificial neural networks with design variables generated by the Taguchi method. The results are compared with actual design data and the 93% achieved accuracy shows the precision of the developed design system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.