Abstract

Fast-switching seat valves suitable for digital hydraulic pumps and motors utilize direct electromagnetic actuators, which must exhibit superior transient performance to allow efficient operation of the fluid power pump/motor. A moving coil actuator resulting in a minimum valve switching time is designed for such valves using transient finite-element analysis of the electromagnetic circuit. The valve dynamics are coupled to the fluid restrictive forces, which significantly influence the effective actuator force. Fluid forces are modeled based on transient computational fluid dynamics models. The electromagnetic finite-element model is verified against experimental measurement, and used to design an optimum moving coil actuator for the application considering different voltage–current ratios of the power supply. Results show that the optimum design depends on the supply voltage–current ratio, however, the minimum switching time obtained is nearly independent on this voltage–current ratio. Selecting a suitable power supply based on thermal considerations yields a switching time just above one millisecond for a travel length of 3.5 mm while submerged in oil. The proposed valve has a pressure drop below 0.5 bar at 600 L/min flow rate, enabling efficient operation of digital hydraulic pumps and motors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.