Abstract

The two-dimensional temperature profile of a multi-finger power SiGe HBT is studied with the electrothermal model, which shows that there is an uneven temperature profile over the device finger for HBT with uniform finger length. Because of the positive current-temperature feedback, the uneven temperature profile will leads to an anomalous current distribution, which eventually caused the thermal instability. To improve the uneven temperature profile and enhance the thermal stability, the HBT with non-uniform finger length is designed. Considering that designing multiple finger length values becomes trivial and time-consuming for the HBT with dozens of emitter fingers, a new thermal design methodology namely Grouping and Adjusting (GA) method is proposed to shorten design time. Taking 30-finger HBT for example, a detailed design procedure is present. The calculated results show both significant improvement on the peak temperature and the uniformity of SiGe HBT with non-uniform finger length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.