Abstract

Reinforced concrete cantilever retaining walls (RCCRWs) are widely used in civil engineering projects as a common type of retaining structure. The design of these structures focuses on ensuring safety against various failure scenarios and compliance with standard building code requirements. This research aims to enhance the design process of RCCRWs by developing a specific code and optimizing it through a metaheuristic-based algorithm. In this study, the cost prediction of RCCRWs is also investigated through a parametric study involving key variables such as wall height, seismic zone, backfill material properties, and backfill inclination angle. To achieve this, non-linear regression analysis is employed to establish an empirical correlation, enabling cost estimation for optimized RCCRWs. The resulting prediction equation is simple to use, requiring only limited inputs. Therefore, it can be applied during the initial stages of a project, making a valuable contribution in determining approximate costs for RCCRW projects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.