Abstract

In this paper, a distributed Bragg reflector (DBR) for a bottom reflector in 850-nm GaAs infrared light-emitting diodes (Ir-LEDs) was developed and optimized. At an 850-nm wavelength, markedly improved reflection spectra were observed from DBRs consisting of Al1-xGaxAs/AlxGa1-xAs materials. In addition, the reflection spectra of Al1-xGaxAs/AlxGa1-xAs-based DBRs was found to increase with increasing difference between the high and the low refractive indices. At multiple layers of 10 pairs, maximal reflection spectra having about a 92% reflectivity were obtained from DBRs consisting of GaAs/AlAs. At 20 pairs, however, outstanding reflection spectra having a higher reflectivity and broader width were clearly observed from DBRs consisting of Al0.1Ga0.9As/Al0.9Ga0.1As. Some incident light appears to have been absorbed and confined by the narrow bandgap of the GaAs material used in DBRs consisting of GaAs/AlAs. This fact could be supported by the decrease in the reflectivity of the shorter wavelength region in DBRs consisting of GaAs/AlAs. For this reason, a remarkable output power could be obtained from the 850-nm GaAs Ir-LED chip having a DBR consisting of Al0.1Ga0.9As/Al0.9Ga0.1As.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call