Abstract
The aims of this study were response surface modeling and optimization of Cr(VI) removal from solution using formaldehyde-modified eucalyptus bark. A high removal rate of Cr(VI) was achieved under the conditions of low adsorbent dosing quantity and high initial concentration of Cr(VI). Analysis of variance showed a high multiple coefficient of determination (R2=0.9875), adjusted determination coefficient (R2Adj=0.9714), and the good second order regression equation. The initial concentration of Cr(VI) was 40.15 mg/L, adsorbent dosing quantity 3.40 g/L, and initial reaction pH 2.78, and the largest removal rate was 99.998% under the optimum reaction conditions. Langmuir and Freundlich isothermal models described well adsorption of Cr(VI) by the modified stringy bark. Adsorption kinetics studies showed that the adsorption was controlled by multiple factors, dominated by chemical adsorption. The adsorption was found to be spontaneous and endothermic, with △G0 0, and △S0 > 0. Adsorption of Cr(VI) by formaldehyde-modified stringy bark was partly controlled by REDOX reactions. The adsorbents were characterized by SEM and FTIR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.