Abstract

Development of Superjunction (SJ) technology has striven to raise the pillar aspect ratio, r, believing that this is the key to progressively reduce the specific ON-resistance, R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ONSP</sub> , for a target breakdown voltage ( V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BR</sub> ). We study the variation of R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ONSP</sub> with r and show the following analytically. The minimum R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ONSP</sub> of practical Si and 4H-SiC SJs is attained at an optimum r = r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> which is as low as 8-15 for V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BR</sub> = 0.1-10 kV and charge imbalance, k = 5%-20%. Moreover, an advantage is that the r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> is not sharply defined, as even ±30% change in r around r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> raises R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ONSP</sub> by <; 10% above the minimum, the raise being lower for lower k and higher V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BR</sub> . In general, for k ≥ 2.5/r <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , the r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> increases logarithmically with ( V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BR</sub> /Bandgap). In contrast, the r <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> of a balanced SJ increases super-linearly with ( V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">BR</sub> /Bandgap) and is several times higher, calling for caution while using balanced SJ theory to design practical SJs. We give a generic closed-form solution valid across materials for designing SJs based on these insights. We verify our results by technology computer-aided design (TCAD) simulation and compare them with prior experimental and theoretical data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call