Abstract

The likelihood ratio test (LRT) for multistatic detection detection is derived for the case where each sensor platform is a coherent space-time radar. Due to the geometric separation of the platforms, target statistics are modeled as independent from platform to platform but constant over the local data on a single platform. Clutter statistics are also assumed independent from platform to platform but have a local space-time correlation structure typical of monostatic space-time adaptive processing (STAP). Moreover, the target Doppler hypothesis varies from platform to platform due to multiple viewing perspectives. Previous published work has investigated the detection improvement obtained by multiple input, multiple output (MIMO) radar. This prior work, however, has only considered white noise. When clutter is considered, the diversity benefit of a MIMO or multistatic radar system is strongly dependent on geometry. We investigate the relationship between geometry and diversity gain for multistatic airborne space-time radar and the effects of this relationship on decentralized and centralized detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.