Abstract

Computer experiments have become ubiquitous across the engineering, physical and chemical sciences. Computer experiments are constructed to emulate the behavior of a physical system. Assume that we perform an experiment using a two-level uniform design. If, after obtaining data, we decide additional runs of the computer simulator are needed, how to add more runs after collecting our data? How to design the experiment to efficiently extract useful information from it? In this paper, we try to answer these questions by providing a new approach for constructing efficient uniform designs by adding new runs to an existing uniform design. The optimization criteria are the uniformity criteria measured by Lee, symmetric, wrap-around, centered and mixture discrepancy and the orthogonality criteria measured by the B-criterion and the O-criterion. We investigate the relationship between orthogonality and uniformity criteria in view of analytical expressions and lower bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.