Abstract

Hydrogen production through CH4 and CO2 over nickel based supported catalyst system is not only a catalytic achievement but also a step towards fulfilling environmental goals of reducing global warming. Yttria is known for its stabilization of ZrO2 as well as involvement of O2− species in lattice. Herein, yttria-zirconia supported Ni catalyst system is utilized for hydrogen production through dry reforming of methane. It is characterized thoroughly by x-ray diffraction, infrared spectroscopy, ultraviolet spectroscopy and x-ray photoelectron microscopy. The spent catalysts are also characterized by temperature-programmed oxidation (TPO) and X-ray photoelectron microscopy. Ni-15Y-ZrO2 is quite thermally stable and it has a wide range of basic sites for CO2 adsorption and highest density of O2− species/lattice oxygen for carbon deposit oxidation. It gives the highest H2 yield (67.5%) that drops slowly to 63.7% during 420 min. Ni-20Y-ZrO2 catalyst activity is more or less same until 210 min. At high reaction temperature 800 °C, Ni-20Y-ZrO2 also shows a slow rise of H2 yield (69%) but Ni-15Y-ZrO2 shows a steep rise in H2 yield (78%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.