Abstract
Hospitals are healthcare institutions that play an important role in providing health services to the community. To optimize the service, hospitals need to predict the number of outpatient visits. The objectives of this research are (1) determine the effect of window size on the accuracy of predicting the number of outpatient visits, and (2) identify the best window size and accuracy of neural networks in predicting the daily number of outpatient visits. To achieve the research objectives, the following steps were undertaken: data collection of outpatient visits at RSUD dr. Soedirman Kebumen from 2018 to 2023, preprocessing, applying different window sizes, modeling neural networks, and testing by calculating the RMSE value for each window size. The test results show that the lowest RMSE for 2018 was 1.267 with a window size of 34, for 2019 was 1.262 with a window size of 34, for 2020 was 1.515 with a window size of 17, for 2021 was 1.81 with a window size of 18, for 2022 was 1.282 with a window size of 20, and for 2023 was 1.263 with a window size of 29. These window sizes indicate the cycle of outpatient visits each year. By understanding these visit cycles, the number of outpatient visits can be predicted at any time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.