Abstract

The world is emphasizing the need for building design that considers energy performance to deal with climate problems. South Korea has constantly been tightening the design standards for saving building energy but with a focus on thermal performance and equipment systems. Accordingly, this study conducted an energy simulation experiment on office buildings with different window-to-wall ratios (WWRs) to propose a smart glazing plan to improve energy performance. An energy simulation experiment was performed on office buildings with varying WWRs to hierarchically analyze the influence of building window performance elements, including the heat transmission coefficient (U-value), visible light transmittance (VLT), and solar heat gain coefficient (SHGC), on building energy performance. The analysis showed that SHGC had the most significant impact on the heating and cooling load, by 22.13%, with the influences of the variables being 12.4% for the U-value, 4.78% for VLT, and 82.83% for SHGC. The results showed that the solar heat gain coefficient (SHGC) had the greatest impact on energy performance among window performance elements, and the effect increased significantly in certain WWRs. Moreover, to improve the energy performance of buildings with higher WWRs, it is essential to reflect the optimum composition of the U-value and SHGC on the window plan. This study’s findings propose measures to supplement existing window plans focusing on thermal performance. Furthermore, these results hold academic value in providing concrete grounds for that.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call