Abstract

Reinforcement learning (RL) has gained attention recently as an optimization algorithm for chip design. This method treats many chip design problems as Markov decision problems (MDPs), where design optimization objectives are converted into rewards given by the environment and design variables are converted into actions provided to the environment. Some recent examples include applications of RL to macro placement and standard cell layout routing. We believe RL can be applied to nearly all aspects of VLSI implementation flows, since many VLSI implementation problems are often NP-complete and state-of-art algorithms cannot be guaranteed to be optimal. With enough training data, it is possible to achieve better results with RL. In this paper we review recent advances in applying RL to VLSI implementation problems such as cell layout, synthesis, placement, routing and parameter tuning. We discuss the challenges of applying RL to VLSI implementation flows and propose future research directions for overcoming these challenges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.